Sky Simulator User Manual

Sky Simulator User Manual

1. Introduction 1.1 Overview 1.2 Features 2. Concepts 2.1 Space 2.2 Flight 2.2.1 Random Flight 2.2.1.1 How Does It Work? 2.2.1.2 Where to Use? 2.2.2 Orbit Flight 2.2.2.1 How Does It Work? 2.2.2.2 Where to Use? 2.2.3 Free Flight 2.2.3.1 How Does It Work? 2.2.3.2 Where to Use? 2.3 Sensor 2.3.1 Radar Sensor 2.3.1.1 What is This? 2.3.1.2 How Does It Work? 2.3.2 ADS-B Sensor 2.3.2.1 What Is This? 2.3.2.2 How Does It Work? 2.4 Time 2.4.1 Simulation Clock 2.4.2 Running Clock 2.4.3 Real Clock 3. Functions 3.1 Overview 3.1.1 Main Window 3.1.1.1 Main Toolbar 3.1.1.2 Status Bar 3.1.2 Views 3.1.2.1 Flight List View 3.1.2.2 Sensor List View 3.1.2.3 Sensor Output View 3.2 Project Management 3.3 Simulation Control 3.4 Flight Management 3.4.1 Flight Creation 3.4.1.1 Random Flight 3.4.1.2 Orbit Flight 3.4.1.3 Free Flight

3.4.2 Flight Termination 3.5 Flight Control 3.5.1 Transponder Operations 3.5.2 Transponder Fault Simulation 3.5.3 Flight Tactical Control 3.6 Sensor Management 3.6.1 Sensor Creation 3.6.1.1 Radar Sensor 3.6.1.2 ADS-B Sensor 3.6.2 Sensor Removal 3.6.3 Sensor Modification 3.7 Settings 3.7.1 Output 4. File Structure and Format 4.1 File Structure 4.2 Project File Format 4.3 Flight Database 4.4 Sensor Database 4.5 Environment Database 5. Annex Annex 1. Hot-Key Combination

1. Introduction

1.1 Overview

Sky Simulator is a surveillance sensor simulation tool.

Project View Simulation Flight Sensor Help	Sky Simulator –	×
Image: Second Product Image: Second Product	Project View Simulation Flight Sensor Help	
Image: Transponder, Milling Transponder Fault, Fight Control ID Type Callsign CAO Addr Squawk Level Location Heading Speed Route 1 Random RAN0001 6864D2 2001 33000 174858N0862604E 187.48 420 174912N0862606E DCT 130209N0854729E DCT 150924N0831436E 2 Random RAN0002 684488 2002 36000 181211N0972112E 116.31 399 181217N0872100E DCT 174358N0861923E DCT 103318N0891129E 3 Random RAN0003 68816C 1200 30000 195950N0800014E 124.28 500 200000N08000000E ORBIT/150000N0850000E/100/000/540 100000N0900000E 5 5 Free FLV001 680E23 1200 30000 150000N0850000E H0000/F300N500T090 S000 150000N085000E H0000/F300N500T090 S000 S0	Random Orbit Free Radar ADS-B Start Pause Stop Speed Flight Sensor Output	5
ID Type Callsign ICAO Addr Squawk Level Location Heading Speed Route 1 Random RAN0001 6864D2 2001 33000 174858N0862604E 187.48 420 174912N0862606E DCT 130209N0854729E DCT 150924N0831436E 2 Random RAN0000 684488 2002 36000 181211N0872112E 116.31 389 181217N0872100E DCT 17438N0891923E DCT 103318N0891129E 3 Random RAN0000 68418D6 2003 36000 103343N0894659E 281.32 274 103341N0894708E DCT 113548N0841509E 4 Orbit ORB001 68616C 1200 30000 15950N0800014E 124.28 500 20000N0800000E ORBIT/150000N0850000E/100/000/540 100000N0900000E 5 Free FLY001 680E23 1200 30000 150000N0850000E H0000/F300N500T090	🚟 Transponder, 🎽 Transponder Fault, 🔀 Flight Control	
1 Random RAN0001 6864D2 2001 33000 174858N0862604E 187.48 420 174912N0862606E DCT 130209N0854729E DCT 150924N0831436E 2 Random RAN0002 684488 2002 36000 181211N0872112E 116.31 389 181217N0872100E DCT 17438N0881923E DCT 103318N0891129E 3 Random RAN0003 6818D6 2003 36000 103343N0894659E 281.32 274 103341N0894708E DCT 113548N0841509E 4 Orbit ORB001 68616C 1200 3000 195950N080014E 124.28 500 200000N080000E ORBIT/150000N0850000E/100/000/540 100000N0900000E 5 Free FLV001 680E23 1200 3000 150000N08500017E 090.00 500 150000N0850000E H0000/F300N500T090	ID Type Callsign ICAO Addr Squawk Level Location Heading Speed Route	
2 Random RAN0002 684488 2002 36000 181211N0872112E 116.31 389 181217N0872100E DCT 174438N0881923E DCT 103318N0891129E 3 Random RAN0003 6818D6 2003 36000 103343N0894559E 281.32 274 103341N0894708E DCT 113548N0841509E 4 Orbit ORB001 68616C 1200 30000 195950N0800014E 124.28 500 20000N0800000E ORBIT/150000N0850000E/100/000/540 100000N0900000E 5 Free FLY001 680E23 1200 30000 150000N0850017E 090.00 500 150000N0850000E H0000/F300N500T090	1 Random RAN0001 6864D2 2001 33000 174858N0862604E 187.48 420 174912N0862606E DCT 130209N0854729E DCT 150924N0831436E	
3 Random RAN0003 6818D6 2003 36000 103343N0894659E 281.32 274 103341N0894708E DCT 113548N0841509E 4 Orbit ORB001 68616C 1200 30000 195950N0800014E 124.28 500 200000N080000E ORBIT/150000N0850000E/100/000/540 100000N0900000E 5 Free FLY001 680E23 1200 30000 150000N0850017E 090.00 500 150000N0850000E H0000/F300N500T090	2 Random RAN0002 684488 2002 36000 181211N0872112E 116.31 389 181217N0872100E DCT 174438N0881923E DCT 103318N0891129E	
4 Orbit ORB001 68616C 1200 30000 195950N0800014E 124.28 500 200000N0800000E ORBIT/150000N0850000E/100/000/540 100000N0900000E 5 Free FLY001 680E23 1200 30000 150000N0850017E 090.00 500 150000N0850000E H0000/F300N500T090	3 Random RAN0003 6818D6 2003 3600 103343N0894659E 281.32 274 103341N0894708E DCT 113548N0841509E	
5 Free FLY001 680E23 1200 30000 150000N0850017E 090.00 500 150000N0850000E H0000/F300N500T090	4 Orbit ORB001 68616C 1200 3000 195950N0800014E 124.28 500 20000N0800000E ORBIT/150000N0850000E/100/000/540 100000N0900000E	
	5 Free FLY001 680E23 1200 30000 150000N0850017E 090.00 500 150000N0850007E H0000/F300N500T090	

It allows you to create a simulation scenario, add different types of flights and surveillance sensors into the scenario.

When the simulation starts to run, it will simulate the flying of flights, and generate sensor output according to sensor characteristics.

The sensor output is in Eurocontrol ASTERIX format, which is industry de facto standard, and can be used by external tools and systems.

Sky Simulator was originally designed and developed to be an useful tool to test air traffic control automation system or other similar system.

1.2 Features

Sky Simulator supports the following types of flights:

• Random Flight

A random flight will select a random route by itself in a predefined fly region, and fly in a random selected ground speed and level.

• Orbit Flight

An orbit flight will enter an orbit route around a specified center with a specified radius.

• Free Flight

A free flight will fly in the space with a starting point and specified level/speed/heading, and flight level/speed/heading could be changed manually by commands included "Flight Control" in real time.

And supports the following types of sensors:

• Radar

Radar detects aircrafts by using reflection (PSR) or transponder reply (SSR), and sends out plots and/or tracks.

• ADS-B

Automatic dependent surveillance – broadcast (ADS-B) receives broadcasts from aircraft transponder, assemble and send out target report.

During the simulation, it's possible to change the simulation speed, or pause it.

It's possible to check the output of selected sensor, in both raw format and decoded format.

2. Concepts

Sky Simulator tries to simulate flights and sensors the same way they behave in real world. In one simulation scenario, there are some objects and they will interact with each other.

- Space
- Flight
- Sensor
- Time

Space is a three-dimensional area where flights and sensors work in.

It is equivalent to the earth surface and the space above it. All points used in simulation must be in this space, one point can be referred as a WGS-84 coordinate (aka. longitude and latitude) plus a level.

NOTE: It is not necessary to explicitly specify something like a working area, as the whole earth surface is implied in every simulation scenario.

2.2 Flight

Flights are aircrafts fly in space.

Each flight has an internal fly model, which will control how the aircraft fly, including heading, speed, level, route, etc. Each flight will fly by its own, and can go to any point in space, it doesn't care if any sensor is "observing" it.

Currently, there are three types of fly model:

- Random Flight
- Orbit Flight
- Free Flight

2.2.1 Random Flight

2.2.1.1 How Does It Work?

A random flight, as saying in its name, will fly randomly in space.

Considering the huge size of the space (whole earth surface), in reality, it's needed to set a *working area* and make aircraft flying only in its working area.

Once a random flight starts to run, it will randomly select two points in its working area, and fly from the start point to the end point.

When flight reach the end point, it will randomly select another point in its working area, and fly to this point.

So the route of a random flight will look like:

174158N0805817E DCT 164759N0874121E DCT 185835N0810057E

And when it reaches the point *185835No810057E*, the route will automatically be extended to:

```
1 | 174158N0805817E DCT 164759N0874121E DCT 185835N0810057E DCT
113648N0801831E
```

On creation of random flight, it will create initial route for at least 1 hour flying.

2.2.1.2 Where to Use?

Random flight can be used when you need to send a number of flights to external system, but don't need to seriously control the route of each flight.

This is useful when you are making generic operation/test in external system.

Another typical case is performance test and capacity test, it's easy to create 1000 flights and 32 sensors, and send all those targets to external system, to reach its capacity and check its performance in this situation.

2.2.2 Orbit Flight

2.2.2.1 How Does It Work?

An orbit flight will fly circles around a point in space.

Once an orbit flight starts to run, it will first fly from its start point to the orbit entrance point, then enter the circle orbit, after flying predefined circles, it will exit from orbit and fly to end point.

The route of an orbit flight will look like:

1 200000N0800000E ORBIT/150000N0850000E/100/000/540 100000N0900000E

The syntax is:

1 START_FIX ORBIT/CENTER_FIX/RADIUS/ENTER_AZIMUTH/EXIT_AZIMUTH END_FIX

After reaching end point, the orbit flight will become inactive.

2.2.2.2 Where to Use?

Circle orbit is commonly used by flight test to check surveillance equipment (e.g. radar) or navid equipment (e.g. DVOR/DME).

It is used to simulate the flight and make sure all support system works well before a real test flight departure.

2.2.3 Free Flight

2.2.3.1 How Does It Work?

A free flight, as saying in its name, will fly freely in space.

when a free flight starts to run, it will fly with initial start_fix/level/speed/heading until someone manually changed its level/speed/heading.

Free flight will fly with its last updated level/speed/heading all the time until someone manually cancel (del) it.

The route of a free flight will look like:

1 150000N0850000E H0000/F300N500T090

The syntax is:

1 | START_FIX TIME/LEVEL-SPEED-HEADING

A free flight will never be ended until some manually cancel (del) it.

2.2.3.2 Where to Use?

As it is very flexible, free fights are quite useful when testing some particular functions of external system. It is possible to instruct free flights to some special zones or to have a special scenario between flights to simulate those situations which are not possible to be done by real flights.

2.3 Sensor

A sensor locates in space, and observes flights flying in its view.

There are different types of sensor, such as primary radar (PSR), conventional secondary radar (SSR), Mode-S secondary radar (Mode-S), automatic dependent surveillance – broadcast (ADS-B), multilateration (MLAT), each type has its very own characteristics. Sky Simulator tries to simulate the behavior of each type of sensor as in the real world.

Each sensor has a set of properties, such as location, SAC/SIC, coverage, silent cone, detection probability, so that two sensors of the same type can have a very different view of space and observes different flights.

Currently, there are two types of sensor:

- Radar
- ADS-B

Each sensor will generate standard ASTERIX output according to its observation of flights in its view, the category of ASTERIX depends on the sensor's type.

Some sensor like ADS-B includes a property to choose which version of ASTERIX standard will be used.

2.3.1 Radar Sensor

2.3.1.1 What is This?

Radar is a detection system that uses radio waves to determine the range, angle, or velocity of objects. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna (often the same antenna is used for transmitting and receiving) and a receiver and processor to determine properties of the object(s). Radio waves (pulsed or continuous) from the transmitter reflect off the object and return to the receiver, giving information about the object's location and speed.

Secondary surveillance radar (SSR) is a radar system used in air traffic control (ATC), that not only detects and measures the position of aircraft, i.e. bearing and distance, but also requests additional information from the aircraft itself such as its identity and altitude. Unlike primary radar systems that measure the bearing and distance of targets using the detected reflections of radio signals, SSR relies on targets equipped with a radar transponder, that replies to each interrogation signal by transmitting a response containing encoded data.

2.3.1.2 How Does It Work?

The RADAR in Sky Simulator is an emulator of real world Radar.

It is installed in a location in the surface of simulation space, and receives data feeds from flights in its coverage view. Then it will assemble received information and send it out in standard ASTERIX category 001/002 or 034/048 messages.

External system could treat it as an ordinary Radar, and receive its data of simulated flights.

In real world, there are conventional radar and Mode-S radar and output of different radar types are different, which are:

- Category 001/002
- Category 034/048

Once a radar is created in simulation scenario, it is "installed" in the location specified in its parameter. the radar can be "installed" in anywhere in the space, it doesn't have to be close to the flights.

And of course, just like in real world, an radar can only observe flights in its coverage, so you cannot assume all simulated flights can be included in one radar sensor's output.

2.3.2 ADS-B Sensor

2.3.2.1 What Is This?

Automatic dependent surveillance – broadcast (ADS–B) is a surveillance technology in which an aircraft determines its position via satellite navigation and periodically broadcasts it, enabling it to be tracked. The information can be received by air traffic control ground stations as a replacement for secondary radar. It can also be received by other aircraft to provide situational awareness and allow self separation.

ADS-B is "automatic" in that it requires no pilot or external input. It is "dependent" in that it depends on data from the aircraft's navigation system.

ADS-B periodically broadcasts information about each aircraft, such as identification, current position, altitude, and velocity, through an onboard transmitter. ADS-B provides air traffic controllers with real-time position information that is, in most cases, more accurate than the information available with current radar-based systems. With more accurate information, ATC will be able to position and separate aircraft with improved precision and timing.

More information about ADS-B could be accessed from Wikipedia.

2.3.2.2 How Does It Work?

The ADS-B in Sky Simulator is an emulator of real world 1090ES ADS-B receiver.

It is installed in a location in the surface of simulation space, and receives broadcasts from flights in its coverage view. Then it will assemble received information and send it out in standard ASTERIX category 21 messages.

External system could treat it as an ordinary ADS-B station, and receive its data of simulated flights.

In real world, different ADS-B station vendors use different versions of ASTERIX category 21 formats, the simulated ADS-B supports three most commonly used ones, which are:

- Category 021 version 0.23
- Category 021 version 0.26
- Category 021 version 2.1 (Experimental)

Once an ADS-B is created in simulation scenario, it is "installed" in the location specified in its parameter. An ADS-B can be "installed" in anywhere in the space, it doesn't have to be close to the flights.

And of course, just like in real world, an ADS-B can only "see" flights in its coverage, so you cannot assume all simulated flights can be included in one ADS-B sensor's output.

2.4 Time

Time makes flights and sensors move.

There are three different clocks in the simulator:

- Simulation Clock
- Running Clock
- Real Clock

2.4.1 Simulation Clock

Simulation clock is used by flights in simulation scenario.

When a simulation starts to run, the simulation clock will start to run the same speed as the clock in real world. All flights in simulation scenario will calculate its "current" position and other fly vectors (heading, speed, level, ...) according to the "current" time in simulation clock.

User can change the speed of simulation clock to for example 5 times of real world clock. In this case, the flights in simulated world will still fly as their original speed, but from the real world observer's point of view, the flight is flying 5 times faster.

Similarly, if you change the speed of simulation clock to 1/2 of real world clock, the flights will look like moving slower.

User can pause the running of simulation clock, in this case all flights will look like frozen in its position, until the simulation clock resumes.

User can even change the simulation clock moving backwards, in this case all flights will also look like moving backwards.

2.4.2 Running Clock

Running clock is used by sensors in simulation scenario.

Once a simulation starts to run, the running clock will start to run the same sapped as the clock in real world.

User cannot change the speed or pause/resume a running clock. The running clock will stop only when the whole simulation scenario is stopped.

Sensor will run in running clock, so that no matter how you change the simulation clock, the sensor will not be affected and keep on reporting flights with the same time period as in real world.

2.4.3 Real Clock

Real clock is UTC time in our real world.

When sensor generates an ASTERIX message, it will fill timestamp with current UTC time in real world.

So that no matter when you start a simulation scenario, and no matter how the simulation clock is modified, the timestamp in transmitted ASTERIX message is always the current UTC time.

This could help external system correctly handing the messages generated by Sky Simulator. External system doesn't need to know anything of Sky Simulator and can treat it as an ordinary surveillance data source.

That's why you can use Sky Simulator to test a real ATC system by mixing simulated flights with real flights.

WARNING: Sky Simulator tries to calculate correct UTC time from OS clock and OS time zone, if OS is not properly configured, the timestamp in generated ASTERIX messages could be wrong.

3. Functions

3.1 Overview

3.1.1 Main Window

The main window of Sky Simulator is shown as below.

Sky Simulator											×	
Project	View Si	mulation	Flight Se	nsor He	lp							
×+× ×+→ Random	Random Orbit Free Radar ADS-B Start Pause Stop Speed Fight Sensor Output											
1090 •===• Tr	ansponder_	🎽 Tran	sponder Fault	, 🔀 Fli	ght Cont	trol						
ID	Туре	Callsign	ICAO Addr	Squawk	Level	Location	Heading	Speed	Route			
1	Random	RAN0001	6864D2	2001	33000	174858N0862604E	187.48	420	174912N0862606E DCT 130209N0854729E DCT 150924N0831436E			
2	Random	RAN0002	684488	2002	36000	181211N0872112E	116.31	389	181217N0872100E DCT 174438N0881923E DCT 103318N0891129E			
3	Random	RAN0003	6818D6	2003	36000	103343N0894659E	281.32	274	103341N0894708E DCT 113548N0841509E			
4	Orbit	ORB001	68616C	1200	30000	195950N0800014E	124.28	500	200000N0800000E ORBIT/150000N0850000E/100/000/540 100000N0900000E			
5	Free	FLY001	680E23	1200	30000	150000N0850017E	090.00	500	150000N0850000E H0000/F300N500T090			
	5 Free FLY001 680E23 1200 30000 150000N0850017E 090.00 500 150000N0850000E H0000/F300N500T090											
									SIM 00:00:02 RUN 00:00:02	UTC 09	:00:58	

As a GUI application, it composes of a main menu on top, a tool bar with different buttons below the main menu, a status bar on bottom, and a switchable list view in the center.

3.1.1.1 Main Toolbar

The main toolbar functions can be put into several groups.

	$x^{\star}x^{\star}$	(1)	\mathbf{X}		ADS-B		Π		≫ -	X		10101 01011
4 4 4 4	Random	Orbit	Free	Radar	ADS-B	Start	Pause	Stop	Speed	Flight	Sensor	Output

Tool Button	Function Group	Description
Random	Flight Control	Create a random flight in simulation.
Orbit	Flight Control	Create an orbit flight in simulation.
Free	Flight Control	Create a free flight in simulation
Radar	Sensor Control	Create a radar in simulation
ADS-B	Sensor Control	Create an ADS-B ground station in simulation.

Tool Button	Function Group	Description
Start	Simulation Control	Start a simulation scenario. Both simulation clock and running clock will start when this button is clicked.
Pause	Simulation Control	Pause or resume a simulation scenario. Only simulation clock will be paused when this button is clicked.
Stop	Simulation Control	Stop a simulation scenario. Both simulation clock and running clock will stop when this button is clicked.
Speed	Simulation Control	Change the speed of simulation clock.
Flight	View Switch	Switch to flight list view, all flights in simulation scenario will be shown in this view.
Sensor	View Switch	Switch to sensor list view, all sensors in simulation scenario will be shown in this view.
Output	View Switch	Switch to sensor output view, the sensor output will be displayed in this view.

3.1.1.2 Status Bar

The status bar shows status information of the simulation.

	SIM 00:09:49 RU	JN 00:01:09 UTC 12:43:49
Item	Description	Example
General Message	Display general message of the application or simulation scenario	"Simulation started."
Simulation Clock	Display current time of simulation clock	"SIM 05:57:45"
Running Clock	Display current time of running clock	"RUN 12:45:07"
Real Clock	Display UTC time of OS clock	"UTC 23:01:57"

3.1.2 Views

In the center of main window, it displays switchable view. There are three views.

The detail of each view will be described in corresponding sections.

3.1.2.1 Flight List View

All flights created in simulation scenario are listed in this view. The information will update during the simulation.

😵 Sky Simulator —											×	
Pro	Project View Simulation Flight Sensor Help											•
Ra	Random Orbit Free Radar ADS-8 Start Pause Stop Speed											
	🚟 Transponder 🕌 Transponder Fault 🔀 Flight Control											
	ID	Туре	Callsign	ICAO Addr	Squawk	Level	Location	Heading	Speed	Route		
	1	Random	RAN0001	6864D2	2001	33000	174858N0862604E	187.48	420	174912N0862606E DCT 130209N0854729E DCT 150924N0831436E		
	2	Random	RAN0002	684488	2002	36000	181211N0872112E	116.31	389	181217N0872100E DCT 174438N0881923E DCT 103318N0891129E		
	3	Random	RAN0003	6818D6	2003	36000	103343N0894659E	281.32	274	103341N0894708E DCT 113548N0841509E		
	4	Orbit	ORB001	68616C	1200	30000	195950N0800014E	124.28	500	200000N0800000E ORBIT/150000N0850000E/100/000/540 100000N0900000E		
	5	Free	FLY001	680E23	1200	30000	150000N0850017E	090.00	500	150000N0850000E H0000/F300N500T090		
										SIM 00:00:02 RUN 00:00:02	UTC 0):00:58

3.1.2.2 Sensor List View

All sensors defined in simulation scenario are listed in this view.

♂ Sky Sin Project V	nulator /iew Sir	nulation Flight	Sensor Help					-		×
Random	Orbit F	ree Radar AD	IS-B Start Pause	Stop S	peed V Flight Se	nsor Output			Š	3
SAC/SI	C Type	Name	Location	Coverage	Channel #1	Channel #2				7
255/001	1 Radar	Mode-S Radar 1	150000N0850000E	0-250	230.230.230.1:52001	230.230.230.2:52002				
255/002	2 Radar	Mode-S Radar 1	150000N0850000E	0-250	230.230.230.3:52001	230.230.230.4:52002				
255/003	ADS-B	ADS-B 1	150000N0850000E	0-250	230.230.230.5:52001	230.230.230.6:52002				
255/004	4 ADS-B	ADS-B 2	150000N0850000E	0-250	230.230.230.7:52001	230.230.230.8:52002				
							SIM 00:00:02 RUN 00:	00:02 l	JIC 09:01:5	1

3.1.2.3 Sensor Output View

The output of selected sensor is shown in this view, both as raw format and decoded format.

3.2 Project Management

Project is like a pool contains flights, sensors and environment data defined for a particular simulated testing case.

Different projects could have different properties but share with the same flight database, sensor database and environment data.

Sky Simulator supports to create different projects, load existed projects and edit project property.

Here is a sample of options in project window .

Following are the steps to create a project.

- Step 1
 Man menu -> Project -> New Project;

 Or press hotkey "Ctrl + N".
 Open New Project Window.
- Step 2 Click *Ok* to create a Project.
- Step 3

Create some flights and sensors for this project.

• Step 4

```
Man menu -> Project -> Save Project;
```

Or press hotkey "Ctrl + S".

To save the current data into current project.

Here is an example of project window:

Project - Sky Simula	tor	×						
Project Information								
Name Proj1								
Author user1	Author user1							
Version 1								
Description								
This is a testing project	t for user 1.							
Project File List								
Project File	proj1.sim							
Environment Database	environment.db							
Flight Database	flights.json							
Sensor Database	sensors.json							
	ОК							

Parameter

Description

Parameter	Description
Name	Name of project
Author	Author of project
Version	Version of project
Description	A short description for project
Project File	Project file, starts with project name, for load project
Environment Database	Environment data for project
Flight Database	flights created for project
Sensor Database	Sensor created for project

3.3 Simulation Control

Simulation control can be accessed by button [Simulation] with the following three options:

• Start Simulation

"Start Simulation" option could start to simulate the scenario that contained in current project.

• Stop Simulation

"Stop Simulation" option is used to stop the running scenario.

• Pause/Resume Simulation

A running scenario could be paused and resumed by "Pause/Resume Simulation" option.

• Simulation Speed

"Simulation Speed" provides the ability to change running speed of the scenario. Speed can be changed between 0.5, 1, 2, 5 and 10 times.

3.4 Flight Management

3.4.1 Flight Creation

3.4.1.1 Random Flight

Following are the steps to create random flight.

• Step 1

Man menu -> Flight -> Create Random Flights; Or Main Toolbar -> Random; Or press hotkey "Shift + R". Open Random Flight Window.

• Step 2

Fill parameters in *Random Flight Window*.

Click *Check* to make sure all parameters are correct.

• Step 3

Click *Create* to create a number of random flights.

• Step 4

In Main Window, switch to Flight List View, check random flights are created.

Here is a sample of *Random Flight Window*.

🔀 Random F	light - Sky Simulator	\times
Airline Code	RAN	
SSR Code	From 2001 🔹 To 7000 🚖	
Altitude (FL)	From 290 🛨 To 410 🜩	
Speed (Knot)	From 250 🜩 To 500 🜩	
Fly Range	Latitude From 100000N To 200000N	
	Longitude From 0800000E To 0900000E	
Number	10 🜩	
Check	Create Cancel	

And the meaning of each parameter is listed below.

Parameter	Description	Format	Example	Note
Airline	The airline ICAO code	[A-Z]{3}	DLH	This parameter will be used as the first three letters of callsign, a 4- digit number will be automatically attached to form the callsign of each flight
SSR Code	The SSR code range of flights	[0-7]{4}	1277	System will try to find and assign a non- duplicated code in this range, but if not

Parameter	Description	Format	Example	Note in this range could be
				assigned
Altitude	Flight level range, unit is flight level, or 100 feet	[0-9]{3}	320	System will assign a random level in this range
Speed	Ground speed range	[0-9]{3}	400	System will assign a random ground speed in this range
Fly Range	Working area of flights	DDMMSS[N/S] DDDMMSS[E/W]	0455933E	The route of flight will be limited in this range
Number	Number of flights will be created	[0-9]+	15	Range 1-1000. Each flight will randomly select its own SSR, level, speed, Mode-S address,

3.4.1.2 Orbit Flight

Following are the steps to create orbit flight.

• Step 1

Man menu -> *Flight* -> *Create Orbit Flights*;

Or Main Toolbar -> Orbit;

Or press hotkey "Shift + O".

Open Orbit Flight Window.

• Step 2

Fill parameters in Orbit Flight Window.

Click *Check* to make sure all parameters are correct.

- Step 3 Click *Create* to create an orbit flight.
- Step 4

In Main Window, switch to Flight List View, check orbit flight is created.

Here is a sample of Orbit Flight Window.

🔁 Orbit Flight - Sky Simulator	×
Callsign ORB001 ICAO Address	
SSR Code 1200 ≑	
Altitude (FL) 300 🜩 Speed (Knot) 500 🜩	
Start Fix 200000N0800000E Stop Fix 100000N0900000E	
Orbit Center 150000N0850000E Radius (NM) 100	
Enter Azimuth 0.00 🜩 Orbit Azimuth 540.00 🜩 Exit Azimuth 0.00 🜩	
Route	
Check Create Cancel	

And the meaning of each parameter is listed below.

Parameter	Description	Format	Example	Note
Callsign	The callsign of flight	[A-Z]{3}[0-9]{1,4}	DLH1923	
ICAO Address	The Mode- S address	[0-9 A-F]{6}	6830C9	System will assign a random Mode-S address which is not used by any other flight
SSR Code	The SSR code of flight	[0-7]{4}	1277	System will not check if code is duplicated or not
Altitude	Flight level, unit is flight level, or 100 feet	[0-9]{3}	320	
Speed	Ground speed	[0-9]{3}	400	
Start Fix	The start point where flight will first appear	DDMMSS[N/S]DDDMMSS[E/W]	200000N0800000E	
Stop Fix	The stop point where flight will finish	DDMMSS[N/S]DDDMMSS[E/W]	 100000N0900000E	
Orbit Center	The center of circle orbit	DDMMSS[N/S]DDDMMSS[E/W]	150000N0850000E	

Parameter	Description	Format	Example	Note
Radius	The radius of circle orbit	[0-9]{3}	100	
Enter Azimuth	The azimuth in degree where flight will enter circle orbit	[0-9]+(\.[0-9]{1,2})?	5.00	Range 0.00 - 359.99
Orbit Azimuth	The azimuth in degree the flight will fly in circle orbit	[0-9]+(\.[0-9]{1,2})?	540.34	
Exit Azimuth	The azimuth in degree where flight will exit circle orbit	[0-9]+(\.[0-9]{1,2})?	184.34	This filed is not mandatory, it will be calculated when clicking <i>Check</i> button
Route	The route of orbit flight			This filed is not mandatory, it will be calculated when clicking <i>Check</i> button

After clicking the *Check* button, system will check all parameters and field with error will be marked with red color.

🚯 Orbit Flight - Sky Simulator	×
Callsign ORB001 ICAO Address	
SSR Code 1200 🜩	
Altitude (FL) 300 🜩 Speed (Knot) 500 🜩	
Start Fix 290000N1030000E Stop Fix 3100000N1030000E	
Orbit Center 300000N1030000E Radius (NM) 100	
Enter Azimuth 0.00 🗢 Orbit Azimuth 540.00 🜩 Exit Azimuth 180.00 🜩	
Route F300N500 290000N1030000E ORBIT/300000N1030000E/100/000/540 310000N1030000E	
Check Create Cancel	

3.4.1.3 Free Flight

Following are the steps to create free flight.

• Step 1

Man menu -> *Flight* -> *Create Free Flights; Or Main Toolbar -> *Free*; Or press hotkey "Shift + F". Open *Free Flight Window*.

• Step 2

Fill parameters in *Free Flight Window*.

Click *Check* to make sure all parameters are correct.

• Step 3

Click Create to create a free flight.

• Step 4

In Main Window, switch to Flight List View, check free flight is created.

Here is a sample of *Free Flight Window*.

🔀 Free Flight - Sky Simulator	×
Callsign FLY001 ICAO Address	
SSR Code 1200 🜩	
Start Fix 150000N0850000E Level (FL) 300 🜩	
Speed (Knot) 500 🜩 Heading (Degree) 90 🜩	
Route 150000N0850000E H0000/F300N500T090	
Check OK Cancel	

Parameter	Description	Format	Example	Note
Callsign	The callsign of flight	[A-Z]{3}[0-9]{1,4}	DLH1923	
ICAO Address	The Mode- S address	[0-9 A-F]{6}	6830C9	System will assign a random Mode-S address which is not used by any other flight
SSR Code	The SSR code of flight	[0-7]{4}	1277	System will not check if code is duplicated or not

Parameter	Description	Format	Example	Note
Start Fix	The start point where flight will first appear	DDMMSS[N/S]DDDMMSS[E/W]	200000N0800000E	
Level	Flight level, unit is flight level, or 100 feet	[0-9]{3}	320	
Speed	Ground speed	[0-9]{3}	400	
Heading	Flight heading	[0-9]{3}	90	Range 0 - 360
Route	The route of orbit flight			This filed is not mandatory, it will be calculated when clicking <i>Check</i> button

3.4.2 Flight Termination

In "Flight List View" window, a selected flight can be terminated at any time of simulation process by:

- 1. Click on "Flight"->"Terminate Flight" button;
- 2. or press hotkey "Del".

Once a flight is terminated, it will be removed from "Flight List Window" and Sky Simulator will also remove it from output data block.

3.5 Flight Control

In the flight view, there is an additional sub-toolbar to provide an access to give the instructions/commands for different type of flights.

Transponder 🕌 Transponder Fault	Flight Control
---------------------------------	----------------

With these functions, variable of scenarios could be simulated to meet the testing requirements that are needed for testing different functions of external system.

Note: To give the instruction/command for a certain flight, this flight must be selected in flight view.

3.5.1 Transponder Operations

Here below list options included in "Transponder Operations":

• Change Squawk

SSR code of the selected flight could be changed through following window.

😚 Change Squa	wk - Tran 🗙	
<u>RAN0001 A/</u>	<u>2001</u>	
New Squawk 5555 🖨		
OK	Cancel	

• SPI

Sky Simulator could enable SPI for a selected flight, maximum duration up to 60 seconds.

😚 SPI - Transponder - Sky S 🗙
RAN0001 A/2001
SPI Time: 10 🜩 Seconds
Note:
1. Time range [0, 60] seconds.
OK Cancel

• Emergency State

Sky Simulator trigger the emergency state for a selected flight, maximum duration up to 600 seconds.

🚱 Emergency State - Transponder - Sky Simulator 🛛 🗙 🗙
RAN0001 A/2001
○ Hijack (7500) ○ Communication Fail (7600) ○ Emergency (7700)
O Minimum fuel O Medical Emergency O No Emergency
Emergency Time: 60 🜩 Seconds
Note:
1. Time range [0, 600] seconds.
OK Cancel

• Disable ADS-B Broadcast

ADS-B broadcast could be disabled for up to 600 seconds.

😚 Disable ADS-B Broadcast - Transponder - Sky Simulator	×
FLY001 A/1200	
Disable Time: 30 🚔 Seconds	
Note:	
1. Time range [0, 600] seconds.	
OK Cancel	

Here below list the options include in "Transponder Fault":

• Speed Drift

Sky Simulator cold simulate a speed jump for a ADSB target.

😚 Speed Drift - Transponder Fault - Sky Simulator	×
RAN0001 A/2001	
Speed Drift: 100.00 🖨 Knots	
Drift Time: 60 🚔 Seconds	
Note:	
 Only affect to transponder DAP speed. Speed drift range [-400, +400] knots. Speed range >= 0 knots. Time range [0, 600] seconds. 	
OK Cancel	

3.5.3 Flight Tactical Control

"Flight Control" only works on "Free Flight", if other flights with fly model orbit or random are selected, when operate on flight control, Sky Simulator will give a warning like the window below.

Here below list the options include in "Flight Control":

• Change Level

Level of flight can be changed by the window below.

😚 Change Level - Sky Simulator	×
FLY001 A/1200	
Current Flight Level (HF) 300 ਵ	
Target Flight Level (HF) 🗦 10 🚖	
Vertical Rate (FT/MIN) 2000 🚖	
Note:	
 Level range [0, 500]. Vertical rate range [0, 5000]. Only applies to free flight. Only one leve/heading/speed manoeuvre per time. 	
OK Cancel	

• Change Speed

Speed of flight can be changed by the window below.

😚 Change Speed - S	Sky Simulator	×
FLY001 A/1200	<u>1</u>	
Current Speed (Knot)	500.00 😫	
Target Speed (Knot)	550.00 😫	
Acceleration (M/S2)	1.00 😫	
Note:		
1. Speed range [0, 80 2. Acceleration range 3. Only applies to free 4. Only one leve/head	0]. [0, 10]. flight. ing/speed manoeuvre per time.	
	OK Cancel	

• Change Heading

Heading of flight can be changed by the window below.

😚 Change Heading - Sky Simulator	\times
FLY001 A/1200	
Current Heading (Deg) 90.00 🗧	
Target Heading (Deg) 180.00 🖨	
Turn (Right/Left)	
Angel Rate (D/S)	
Note:	
 Heading range [0, 360). Angle rate range [0, 10]. Only applies to free flight. Only one leve/heading/speed manoeuvre per time. 	
OK Cancel	

3.6 Sensor Management

3.6.1 Sensor Creation

3.6.1.1 Radar Sensor

Following are the steps to create RADAR.

• Step 1

Man menu -> Sensor -> Create Radar; Or Main Toolbar -> Radar. Open Radar Window. • Step 2

Click Create to create a Radar.

• Step 3

In Main Window, switch to Sensor List View, check Radar is created.

Here is a sample of Radar Window.

📡 Radar - Sky Simulator	\times
Name Unnamed Radar Model Mode-S Radar	
SAC 255 🖨 SIC 1 ≑	
Type PSR 🗹 MSSR 🗹 Mode-S 🗌 Weather	
Location 300000N1000000E Height 0	
Coverage (NM) From 0 🜩 To 250 🜩	
Refresh Period (SEC) 4 ≑	
Output format CAT034/048 -	
Channel 1 Destination Address 230.230.230.1 Port 52001 ≑	
Channel 2 Destination Address 230.230.230.2 Port 52002 ≑	
OK Cancel	

Parameter	Description	Format	Example	Note
Name	Name of Radar	Free text	Mode-S Radar	
Model	Model of Radar		SinoATC Mode-S Radar	Model is used to emulate product characteristic from different vendors.
SAC/SIC	SAC and SIC code	[0-9]{1,3}	197	Range 0 - 255. Each sensor must have a unique SAC/SIC in one simulation scenario
Туре	Type of Radar			Check different options to output different types of data
Location	Location of Radar	DDMMSS[N/S]DDDMMSS[E/W]	150000N1030000E	

Parameter	Description	Format	Example	Note
Coverage	Minimum and maximum coverage	[0-9]{1,3}	250	
Refresh Period	Period to update all flights in its view	[0-9]{1,2}	4	Range 1 - 10
Output Format	The format that will be used to encode ASTERIX message		CAT0001/002 CAT034/048	
Channel	If output channel is activated			If both channels are deactivated, no message will be transmitted even there are flights in ADS-B's view
Destination Address	IP address		230.230.230.1	Must be a valid multicast, broadcast or unicast address
Port	Port number		52001	Range 1 – 65535

3.6.1.2 ADS-B Sensor

Following are the steps to create ADS-B station.

• Step 1

Man menu -> Sensor -> Create ADS-B;

Or Main Toolbar -> *ADS*-*B*.

Open ADS-B Ground Station Window.

• Step 2

Click Create to create an ADS-B ground station.

• Step 3

In *Main Window*, switch to *Sensor List View*, check ADS-B ground station is created.

Here is a sample of *ADS*-*B Window*.

🚟 ADS-B Ground Station - Sky Simulator	×
Name Unnamed ADS-B Model Sky Observer 1090ES	
Location 300000N1000000E	
Coverage (NM) From 0 🚔 To 250 🖨	
Refresh Period (SEC) 1 🜩	
Output format CATO21 v0.26 (Recommended) 🔻	
Channel 1 Destination Address 230.230.230.1 Port 52001 🖨	
Channel 2 Destination Address 230.230.230.2 Port 52002 ≑	
OK Cancel	

And the meaning of each parameter is listed below.

Parameter	Description	Format	Example	Note
Name	Name of ADS- B ground station	Free text	My ADS-B	
Model	Model of ADS- B		SinoATC 1090ES ADS- B Receiver	Model is used to emulate product characteristic from different vendors.
SAC/SIC	SAC and SIC code	[0-9] {1,3}	197	Range 0 - 255. Each sensor must have a unique SAC/SIC in one simulation scenario
Coverage	Minimum and maximum coverage	[0-9] {1,3}	250	
Refresh Period	Period to update all flights in its view	[0-9] {1,2}	2	Range 1 – 10
Output Format	The format that will be used to encode		CAT021 v0.26	

Parameter	ASTERIX Dessrigtion	Format	Example	Note
Channel	If output channel is activated			If both channels are deactivated, no message will be transmitted even there are flights in ADS- B's view
Destination Address	IP address		230.230.230.1	Must be a valid multicast, broadcast or unicast address
Port	Port number		52001	Range 1 - 65535

After clicking the *Create* button, system will check all parameters, if any error is detected, an error message will be shown.

3.6.2 Sensor Removal

In "Sensor List View" window, a selected sensor can be removed when the simulation is stopped by:

- 1. Click on "Sensor"->"Remove Sensor" button;
- 2. Or press hotkey "Shift + Del".

3.6.3 Sensor Modification

In "Sensor List View" window, a selected sensor can be edited when the simulation is stopped by:

• Click on "Sensor"->"Edit Sensor ..." button;

🚟 ADS-B Ground Station - Sky Simulator	×
Name Unnamed ADS-B Model Sky Observer 1090ES SAC 255 ÷ SIC 1 ÷ Location 300000N1000000E Coverage (NM) From 0 ÷ To 250 ÷ Refresh Period (SEC) 1 •	
Kefresh Period (SEC) 1	
Output format CATO21 v0.26 (Recomended) -	
Channel 1 Destination Address 230.230.230.1 Port 52001 🖨	
Channel 2 Destination Address 230.230.230.2 Port 52002 🜩	
OK Cancel	

3.7 Settings

3.7.1 Output

🏟 Settings - Sky Simulator	×
Cutput Sensor Output UDP Multicast LAN Interface WLAN UDP multicast and broadcast packets will be sent through interface sel by operation system according to their destination address.	ected
* Restart application to take effect.	Cancel

Setting Description

UDPUDP multicast packets will be sent through interface specifiedMulticasthere; UDP unicast and broadcast packets will be sent throughLANinterface selected by operation system according to theirInterfacedestination address.

4. File Structure and Format

4.1 File Structure

When saving a project into hard drive, different information in a simulation session will be saved into different files.

Files in a typical project looks like:

Project file (*.sim)contains project information and references to other files used in this project. The name of this file is the one you entered when saving a new project for the first time.

Flight database (flights.json) contains all flights created in simulation session.

Sensor database (sensors.json) contains all sensors created in simulation session.

Environment database (environment.db) contains airspace environment data used by flights in simulation session.

4.2 Project File Format

Project file is an INI format plain text file. You can open it with any text editor such as vi or notepad.exe.

The content of a project file looks like:

```
1 [meta]
2 name=A Sample Project
3 author=Donald Trump
4 version=1.0
5 description=Flights to simulate flight test.
6
7 [files]
8 environment=environment.db
9 flight=flights.json
10 sensor=sensors.json
```

4.3 Flight Database

Flight database is a <u>JSON</u> format plain text file. You can open it with any text editor such as vi or notepad.exe.

The content of a flight database file looks like:

```
1 [
2 {
3 "callsign": "FLY001",
```

```
"icaoaddr": "6804ea",
 4
 5
             "model": {
                 "heading": 90,
 6
 7
                 "level": 25000,
8
                 "speed": 300,
                 "start": "302828N1035636E"
 9
10
            },
11
            "squawk": "2401",
12
             "type": "free"
13
        },
14
        {
15
             "callsign": "RAN0001",
             "icaoaddr": "68022d",
16
17
             "model": {
                 "altitude": 30000,
18
                 "northeast": "343806N1084640E",
19
                 "southwest": "261652N0990739E",
20
21
                 "speed": 331
22
            },
            "squawk": "2001",
23
             "type": "random"
24
25
        },
26
        {
27
             "callsign": "ORB001",
             "icaoaddr": "681015",
28
29
             "model": {
                 "altitude": 30000,
                 "center": "302828N1035637E",
31
32
                 "enter-azimuth": 180,
33
                 "orbit-azimuth": 720,
34
                 "radius": 100,
35
                 "speed": 450,
                 "start": "265646N1041251E",
36
37
                 "stop": "265646N1041251E"
38
            },
            "squawk": "2500",
39
            "type": "orbit"
40
41
        }
42
   ]
```

WARNING: Please do NOT modify this file unless you are sure what are you doing. A corrupted flight file will not be loaded by Sky Simulator, and you may lost all flights created before.

4.4 Sensor Database

Sensor database is a J<u>SON</u> format plain text file. You can open it with any text editor such as vi or notepad.exe.

The content of a sensor database file looks like:

```
1 [
2 {
3 "ch1": true,
```

```
4
            "ch1 addr": "224.0.10.11",
 5
            "ch1 port": 20021,
            "ch2": false,
6
7
            "ch2 addr": "230.230.230.2",
            "ch2 port": 52002,
8
9
            "coverage": 250,
            "format": "cat21v0.26",
10
11
            "interval": 1,
12
            "location": "113117N0102007E",
13
            "min coverage": 0,
            "name": "Test ADS-B",
14
            "sac": 16,
15
            "sic": 11,
16
17
            "type": "adsb"
18
       },
19
       {
20
            "ch1": true,
            "ch1 addr": "224.0.10.1",
21
22
            "ch1 port": 20011,
            "ch2": false,
23
24
            "ch2 addr": "230.230.230.2",
25
            "ch2 port": 52002,
            "format": "cat48",
26
27
            "location": "102828N0095636E",
            "modes": true,
28
            "name": "Test Radar",
29
            "psr": false,
            "rotation period": 4,
31
32
            "sac": 16,
33
            "sectors": 16,
34
            "sic": 19,
            "ssr": true,
35
36
            "ssr coverage": 250,
37
            "ssr min coverage": 0,
            "type": "radar"
38
39
       }
40 ]
```

WARNING: Please do NOT modify this file unless you are sure what are you doing. A corrupted sensor file will not be loaded by Sky Simulator, and you may lost all sensors created before.

4.5 Environment Database

Environment database is a <u>SQLite 3</u> database file, you can use any SQLite compatible database management tool to open it.

It contains essential airspace data used by flights using ICAO IFR fly model in simulation session.

NOTE: Environment database is not included in current version of Sky Simulator.

5. Annex

Annex 1. Hot-Key Combination

Project Management Hotkeys

Here below describes those hotkeys for project management.

Key Combination	Function
Ctrl + N	Create new project
Ctrl + O	Open a project
Ctrl + S	Save current project
Ctrl + Shift + S	Save current project as
Ctrl + D	Open project property

Simulation Management Hotkeys

Here below describes those hotkeys for simulation management.

Key Combination	Function
F5	Start simulation
Shift + F5	Stop simulation

Flight Management Hotkeys

Here below describes those hotkeys for flight management.

Key Combination	Function
Shift + R	Create random flights
Shift + O	Create orbit flights
Shift + F	Create free flights
Del	Delete selected flight (In flight view)

Sensor Management Hotkeys

Here below describes the hotkey for sensor management.

Key Combination	Function
Shift + Del	Delete selected sensor (In sensor view)